

Z-Hydrogen to Decarbonize Refineries

Jon Feinstein and Sanjiv Ratan ZoneFlow Reactor Technologies, LLC

Refinery Decarbonization Points to the Hydrogen Production Unit

Refining creates 5% of the cradle-to-grave emissions from oil.

Only the hydrogen production unit separates carbon from hydrogen (the clean fuel) at high CO₂ partial pressure.

The hydrogen separation unit must play the central role in the decarbonization of refinery emissions.

Refinery-Off-Gases Used as Fuel in Scattered Process Heaters

Life Cycle Analysis CO_{2e} Emissions Relative to Grey SMR Hydrogen

* with implausible assumption of 100% renewable power that is dispatchable ZoneFlow Reactor Technologies, LLC

Post-Combustion CO₂ Capture: Serious Drawbacks

- Must first remove NOx, SOx and particulates
- Large molar flow at atmospheric pressure entails
 - Low inlet partial pressure of CO₂
 - High energy consumption to push the gas through the system
 - Large equipment (2-3 times that for pre-combustion)
- Residual oxygen (from excess combustion air)
 - Degrades the solvents
 - Causes corrosion
- Alternatives to amines (VSA, chilled ammonia, chemical looping) are not economical either

ATR Limitations

70% CO₂ avoidance

- ATR uses partial oxidation of natural gas with pure oxygen followed by steam reforming
- Oxygen separation from air is (electric) power-intensive, adding to the carbon footprint, even if 100% renewable (non-dispatchable).
- A fuel-fired heater is still needed for feed preheating which either emits carbon or requires expensive post-combustion carbon capture.
- Above factors lower the net CO₂ avoidance to 70% or less.
- ATR route for H₂ economical only at much larger capacities
- Not applicable for retrofitting the existing SMR-based H₂ plants in refineries.

Feedstock Conversion to Product

		Methane usage	Methane conversion	WGS conversion	PSA H ₂ loss	Moles H ₂ per mole CH ₄	H ₂ to fuel	Moles H ₂ export per mole CH ₄
Grey	Feedstock	90%	70%	80%	11%	2.32	0%	2.3
SMR	Fuel	10%						

Z-H ₂	Feedstock	100%	100%	100%	0%	4.00	45%	2.2
	Fuel	0%						

- Net hydrogen export per unit of methane is about the same.
- Because only about 70% feedstock can convert per trip, the SMR must process about 50% more feed, affecting the capital cost.

	Leveli				
Carbon capture	SMR	CO ₂	Transport/ sequestration	Total	CO ₂ avoidance
Pre-combustion	\$0	\$34	\$10	\$ 44	55%
Post-combustion	\$0	\$74	\$10	\$84	89%
Z-Hydrogen	\$24	\$30	\$10	\$64	99.5%

ZoneFlow Reactor Technologies, LLC

ZoneFlow Reactor Technologies, LLC

Z-Hydrogen Differentiators

- Lowest emissions
- Lowest cost at high % CO₂ avoidance
- Unmatched integration of proven and reliable pre-combustion CO₂ removal with SMR reconfiguration for highest CO₂ avoidance
- Market-ready no new or "under development" CO₂ capture or other technology and related risks
- Effective redemption of existing SMR assets by retrofitting
- Optimal integrated utilization of steam for power, heat, and reactions
- Low land use

Z-Hydrogen Applications

- Patents pending Z-H₂, Z-Ammonia, Z-Methanol and Z-GTL
- Refineries use Z-Hydrogen SMRs to fuel all process heaters, lowering the GHG footprint of oil by 5%.
- Ammonia Combine PSA hydrogen with purified nitrogen from the SMR flue gas. Purge just carbon-free inerts (Ar) to burners.
- Methanol and GTL Monetize the excess hydrogen as fuel. Recycle the synthesis loop CH₄ and N₂ purges to transform carbon emissions to methanol and fuel products.

Z-Ammonia

Thank You !

For additional information, contact:

Jon Feinstein Technology Director jfeinstein@ZoneFlowTech.com +1 914.471.2137

www.zoneflowtech.com

ZoneFlow Reactor Technologies, LLC