

INTERNATIONAL REFINING AND PETROCHEMICAL CONFERENCE AMERICAS

September 25-26, 2019 | Crowne Plaza—Houston NRG, Houston, Texas HPIRPC.com/Americas

SULZER Greenedey

Spotlight on

Technology Sponsor

Lanyard Sponsor

Dräger

Spotlight on **Technology Sponsor**

Technology Sponsor

Spotlight on

Spotlight on Technology Sponsor

Media Hosts

Gulf Energy⁽ⁱ⁾

GAS PROCESSING & LNG

HYDROCARBON PROCESSING[®]

Pipeline & Gas Journal

Network TERNATION

Tour Sponsor

AVEVA

Data Sponsor

Mini-Tech Session

Sponsor

Innovative ZoneFlow[™] Structured Catalyst System - Gearing for the Future in Steam Reforming

Sanjiv Ratan, ZFRT, USA & Prof. Juray de Wilde, UCL, Belgium

Presentation Outline

- Introduction
- From current BAT 'pellet' steam reforming catalyst -Status quo to ZoneFlow[™] (ZF) structured catalytic reactor technology - an innovative breakthrough
- ZF product development update and validation programs
- Application merits and advanced solutions of ZF reactor technology
- Conclusions

Introduction

- Steam (methane) reforming (SMR) is the most prominent process and 'technology of choice' for hydrogen-syngas generation
- State-of-the-art steam reforming catalysts have by and large stayed "pellet-based" and so have the inherent deficiencies
- Various attempts have been made in the past for developing structured catalyst for SMR but weren't very successful due to few core challenges till lately
- ZoneFlow Reactor Technologies (ZFRT) has developed an advanced, innovative and breakthrough ZoneFlow[™] structured catalyst reactor system (ZF) for steam reforming which overcomes most of the pellet catalyst deficiencies :

ZoneFlowTM Gearing for the Future in Steam Reforming

Conventional pellet SMR catalyst

ZoneFlow[™] structured catalytic reactor system

ZF Merits overcome BAT Deficiencies

Property	BAT - Status quo	ZoneFlow – differntited merits	
Substrate	Ceramic	Metallic foil	
Geometry	Pellets in various shapes	Structured annular casing	
Loaded pattern	Random, non-uniformity	Aligned stack, fully uniform	
Strength and Voidage	Limited (mutually)	Robust, flexible. high voidage	
Flow / temp mal-distr	Inherent (catalyst packing)	None or minimized - entire life	
Thermal cycling effects	Attrition & settling ; dP >>	No attrition & settling, stable dP	
Utilization of catalyst volume	Partial (thermal gradient); sporadic wall contact	Full, peripheral proximity - in cold AND hot condition	
GSA access / activity	Diffusion limited	Full open-access to coated fins	
Catalyst effectiveness	Low , inherent	Higher (by multi-fold)	
Pressure drop	Base, increasing over life	Lower; same over entire life	
Heat transfer	Base, stagnant inner film	e, stagnant inner film Higher; near-wall turbulence	

- Concept design and Cold-flow testing
- Bench-scale unit at HyPaul lab UC Davis
- Manufacturing and mechanical performance
- Demo in commercial plant
- New generation (cost) optimized design development
- Specific application need based ZF products as enabling technology
 - Single-pass (ZF-SP)
 - Bayonet (ZF-B)
- Commercial roll-out

ZF Validation Program

- Focus on verification and validation of performance at near-commercial conditions
 - CFD modelling (1D & 3D)
 - Heat transfer and pressure drop test rig (UCL)
 - Commercial-scale pilot plant for hot reactive testing (UCL)
 - Kinetics (intrinsic) evaluations of prospective catalysts (UCL)
 - Pilot and demonstration installations at strategic customer sites

- Detailed 3D geometry (periodic domain)
- Detailed reaction kinetics (coupled)
- Reynolds-Averaged Navier-Stokes approach

Boundary_conditions:

(De Wilde & Froment, 2012)

Solid internals coated with catalyst:

$$\widetilde{k}_{g,A} \left(m_{As}^{s} - m_{A} \right) = \rho_{s} dM_{A} \sum_{k} \alpha_{A,k} \eta_{k} r_{k} (\overline{m}_{s}^{s}, T_{s})$$

$$= (1 - \varepsilon) \rho_{s} M_{A} \sum_{k} \alpha_{A,k} \eta_{k} r_{k} (\overline{m}_{s}^{s}, T_{s}) / a_{V}$$

$$h_{f} (T_{s} - T) = \rho_{s} d\sum_{k} \eta_{k} r_{k} (\overline{m}_{s}^{s}, T_{s}) (-\Delta H_{k})$$

$$= (1 - \varepsilon) \rho_{s} \sum_{k} \eta_{k} r_{k} (\overline{m}_{s}^{s}, T_{s}) (-\Delta H_{k}) / a_{V}$$

CFD Modeling Results

Rigorous CFD and FEA Results

Temp Profiles

FE Analysis

Pressure Drop - Heat Transfer Test Rig

Air flow 75-300 Nm³/h, temperature 100-500°C

Pressure Drop Testing : ZF v/s Pellets

Turbulence model (CFD) / friction factor (1D)

$$\frac{dP}{dZ} = -f\frac{\rho_g u_s^2}{L}$$

ZoneFlow:

$$f = \frac{16}{Re} + a_1 Re^{-a_2}$$

Packed bed:

$$f = \frac{1-\varepsilon}{\varepsilon^3} \left[a_3 + \frac{a_4(1-\varepsilon)}{Re_p} \right]$$

95% confidence intervals model parameters determined

Heat Transfer Testing : ZF v/s Pellets

ZoneFlow:

$$Nu = \frac{86L}{\lambda_g} + a_5 Re^{a_6} Pr^{1/3}$$

Packed bed: a_7d_p

$$Nu_p = \frac{a_7 a_p}{\lambda_g} + a_8 Re_p Pr$$

- 95% confidence intervals model parameters determined
- Fast generation of turbulence in the near-wall region confirmed

ZF v/s Pellets A : dP-HTC Relation

ZF v/s Pellets B : dP-HTC Relation

Catalyst Kinetics Evaluation Lab

Kinetic Modeling

ZF Reactive Model Validation

SV = 1,198. Nm³/h/m³

SV = 1,956. Nm³/h/m³

ZF's Commercial Demonstration

Installation

Operation

Extraction

- 2 tubes in a 204 tubes Oxo-SMR in Texas
- Up to 80° C lower TMT compared to adjacent tubes
- Up to 24% lower pressure drop
- No hot spots
- ZF structure intact in original form after >15,000 hrs operation and with 5 thermal cycles

ZFRT Pilot Plant Installation

- At Université Catholique de Louvain (UCL), Belgium
- Fully equipped and instrumented for rigorous testing under commercial conditions
- In collaboration with
 Prof. Froment and Prof. de
 Wilde
- Operational 4Q 2019

Glimpses of Pilot Plant Execution

Glimpses of Pilot Plant Execution (cont'd)

ZF Applications in SMRs: Core-Merit and Benefits

- ZF's lower dP, higher HTC and higher catalyst effectiveness allow the following underlying advantages, especially for retrofits :
 - higher throughput without increasing pressure drop
 - higher SMR outlet temp <u>without</u> increasing maximum tube skin temperature (TSM)
 - higher heat flux (average and peak) and/or higher reforming severity with minimal increase in bridge-wall temperature and thus related firing and flue gas
 - lower approach to equilibrium
- Exploitation of ZF's annular structure supports "recuperating reforming"

ZF Advanced Solutions for SMRs

- ZF-Single pass (ZF-SP)
 - De-stressing and/or debottlenecking of existing SMRs (upto 15%) with no or minimum modifications
 - Higher average heat flux, cost-effective and more reliable new SMRs
- ZF-Bayonet (ZF-B)
 - ZF design inherently suitable for recuperative reforming in new SMRs, overcoming the challenges with Pellets

ZF-SP for SMR Debottlenecking

		De-stressing	Upgrading
Max. current capacity,	%	95	100
Post ZF retrofit capacity,	%	100 📕	115 🕈
S/C Ratio		3.1	2.8
Outlet temp,	С	860	872
Approach to equilibrium	С	-10	-7
CH4 slip,	vol % dry	5.5	5.5
Catalyst pressure drop (design 2.8 bar),	bar	< 2.8	2.8
Relative Radiant duty	%	100	114
Avg heat flux	kW/m2	75	86
Bridgwall temp,	С	1008	1020
Max. Tube Skin Temp (design 940 C)	С	< 940	940

ZF-Bayonet Configurations

ZF-Bayonet Modeling Results

Drivers and Benefits of ZF-Bayonet

- Direct exploitation of ZF's inherent annular design
- Overcomes innate limitations of the "pellet" catalyst against crushing from differential expansion / thermal cycling
- SMR size reduction up to 20% based on high grade heat recovery for reforming
- Allows "Zero export steam" hydrogen plants for :
 - remote, stand-alone or "distributed " hydrogen plants not having a steam host
 - cases where export steam has low or no credit compared to fuel
- Allows lowering of carbon-footprint from reduced firing per unit H2
- Compact / modularized SMR units
- Applicable in various SMR configurations and designs

Conclusions

- Steam Reforming has been the predominant technology for Hydrogen - Syngas generation
- SMR catalyst governs to a large extent its capacity rating, performance, operational reliability and tube life
- Current pellet catalysts have inherent deficiencies, thus limiting the extent of improvements.
- ZoneFlow Reactor Technologies (ZFRT) has developed breakthrough and innovative structured catalyst reactors for steam reforming
- ZoneFlow[™] (ZF) suite of catalysts offer exceptional and advanced solutions for revamping as well as new SMRs, providing attractive Capex and Opex benefits.
- After successful demo and test rig results, the upcoming world class pilot plant will allow extensive testing under commercial conditions and beyond for establishing its merits.

Thank You !

For additional information, contact:

Sanjiv Ratan Director of Marketing and Prod Dev sratan@zoneflowtech.com

+1-951-538-5501

INTERNATIONAL REFINING AND PETROCHEMICAL CONFERENCE AMERICAS

September 25-26, 2019 | Crowne Plaza—Houston NRG, Houston, Texas HPIRPC.com/Americas

SULZER Greenedey

Spotlight on

Technology Sponsor

Lanyard Sponsor

Dräger

Spotlight on **Technology Sponsor**

Technology Sponsor

Spotlight on

Spotlight on Technology Sponsor

Media Hosts

Gulf Energy⁽ⁱ⁾

GAS PROCESSING & LNG

HYDROCARBON PROCESSING[®]

Pipeline & Gas Journal

Network TERNATION

Tour Sponsor

AVEVA

Data Sponsor

Mini-Tech Session

Sponsor