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Presentation Outline

▪ Introduction

▪ From current BAT ‘pellet’ steam reforming catalyst -

Status quo to ZoneFlowTM (ZF) structured catalytic 

reactor technology - an innovative breakthrough

▪ ZF product development update and validation 

programs

▪ Application merits and advanced solutions of ZF 

reactor technology

▪ Conclusions
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Introduction

▪ Steam (methane) reforming (SMR) is the most prominent 

process and ‘technology of choice’ for hydrogen-syngas 

generation

▪ State-of-the-art steam reforming catalysts have by and large 

stayed “pellet-based” and so have the inherent deficiencies 

▪ Various attempts have been made in the past for developing 

structured catalyst for SMR but weren’t very successful due 

to few core challenges till lately 

▪ ZoneFlow Reactor Technologies (ZFRT) has developed an 

advanced, innovative and breakthrough ZoneFlowTM

structured catalyst reactor system (ZF) for steam reforming 

which overcomes most of the pellet catalyst deficiencies :
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ZoneFlowTM

Gearing for the Future in Steam Reforming
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Conventional pellet 
SMR catalyst

ZoneFlowTM structured
catalytic reactor system
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ZF Merits overcome BAT Deficiencies
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Property

Substrate

Geometry 

Loaded pattern  

Strength and Voidage

Flow / temp mal-distr

Thermal cycling effects

Utilization of catalyst 
volume

GSA access / activity

Catalyst effectiveness

Pressure drop

Heat transfer 

ZoneFlow – differntited merits 

Metallic foil 

Structured annular casing 

Aligned stack, fully uniform

Robust, flexible. high voidage

None or minimized - entire life

No attrition & settling, stable dP

Full, peripheral proximity - in 
cold AND hot condition 

Full open-access to coated  fins

Higher (by multi-fold)

Lower;  same over entire life

Higher;  near-wall turbulence

BAT - Status quo

Ceramic 

Pellets in various shapes

Random, non-uniformity

Limited (mutually)

Inherent (catalyst packing)

Attrition & settling ;  dP >> 

Partial (thermal gradient); 
sporadic wall contact

Diffusion limited

Low , inherent

Base, increasing over life

Base, stagnant inner film
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ZF Product Development Path and Milestones

• Concept design and Cold-flow testing

• Bench-scale unit at HyPaul lab UC Davis 

• Manufacturing and mechanical performance

• Demo in commercial plant

• New generation (cost) optimized design development

• Specific application need based ZF products – as 

enabling technology 
• Single-pass (ZF-SP)

• Bayonet (ZF-B)

▪ Commercial roll-out
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ZF Validation Program

• Focus on verification and validation of performance  at 

near-commercial conditions  

• CFD modelling (1D & 3D)

• Heat transfer and pressure drop test rig (UCL)

• Commercial-scale pilot plant for hot reactive testing 

(UCL)

• Kinetics (intrinsic) evaluations of prospective catalysts 

(UCL)

• Pilot and demonstration installations at strategic customer 

sites
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• Detailed 3D geometry (periodic domain)
• Detailed reaction kinetics (coupled)
• Reynolds-Averaged Navier-Stokes approach

Solid internals coated with catalyst:

Boundary conditions: (De Wilde & Froment, 2012)

Computational Fluid Dynamics (CFD) Modeling
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CFD Modeling Results

“Pellets”  

reference
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Rigorous CFD and FEA  Results

FE AnalysisTemp Profiles
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Pressure Drop - Heat Transfer Test Rig
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Air flow 75-300 Nm³/h, temperature 100-500°C
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ZoneFlow:

Packed bed:

Turbulence model (CFD) / 
friction factor (1D)

12 mm annulus

Pressure Drop Testing : ZF v/s Pellets

95% confidence intervals model 
parameters determined
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Heat transfer - I:

SMR mix. flow rate (Nm³/hr)

Typical conditions for comparison performance: see previous slide

ZF-2C
ZF-2D
ZF-6D
PB

SMR mix. flow rate (Nm³/hr)

ZF-2C
ZF-2D
ZF-6D
PB

SMR mix. flow rate (Nm³/hr)

ZF-2C
ZF-2D
ZF-6D
PB

Air flow rate (Nm³/hr)

Heat transfer - I:

SMR mix. flow rate (Nm³/hr)

Typical conditions for comparison performance: see previous slide

ZF-2C
ZF-2D
ZF-6D
PB

SMR mix. flow rate (Nm³/hr)

ZF-2C
ZF-2D
ZF-6D
PB

SMR mix. flow rate (Nm³/hr)

ZF-2C
ZF-2D
ZF-6D
PB

Air flow rate (Nm³/hr)

𝑁𝑢 =
86𝐿

𝜆𝑔
+ 𝑎5𝑅𝑒

𝑎6𝑃𝑟 ൗ1 3

𝑁𝑢𝑝 =
𝑎7𝑑𝑝
𝜆𝑔

+ 𝑎8𝑅𝑒𝑝𝑃𝑟

ZoneFlow:

Packed bed:

▪ 95% confidence intervals model 
parameters determined

▪ Fast generation of turbulence in 
the near-wall region confirmed

Heat Transfer Testing : ZF v/s Pellets
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ZF v/s Pellets A : dP-HTC Relation
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x

Prorated to SMR conditions : 
28 barg, 550 Nm3/h

Air at ~ 0.1 barg
and 175 Nm3/h

Pellet Reference

Using full dP of pellets, 
ZF HTC is enhanced by 

75% to 130%

x
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Using pellets dP, ZF HTC 
is enhanced improved 

by 75% and 95%

Pellet 
Reference

ZF v/s Pellets B : dP-HTC Relation
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Catalyst Kinetics Evaluation Lab

16
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Parameter Value Unit t-value 95% Confidence intervals 

𝐴(𝑘1) 
𝐴(𝑘2) 

7.48 ×  1012 
5.43 × 105 

𝑚𝑜𝑙. 𝑏𝑎𝑟1 2 /(𝑘𝑔𝑐𝑎𝑡 . 𝑠) 
𝑚𝑜𝑙/(𝑘𝑔𝑐𝑎𝑡 . 𝑠. 𝑏𝑎𝑟) 

27.98 7.48 ± 0.54 (× 1012) 
Xu and Froment (1989) 

𝐴(𝑘3) 9.56 ×  1011  𝑚𝑜𝑙. 𝑏𝑎𝑟1 2 /(𝑘𝑔𝑐𝑎𝑡 . 𝑠) 28.43 9.56 ± 0.68 (× 1011) 

𝐸𝑎1 
𝐸𝑎2 

226.4 
67.13 

𝑘𝐽/𝑚𝑜𝑙 
𝑘𝐽/𝑚𝑜𝑙 

60.16 226.4 ± 7.5 
Xu and Froment (1989) 

𝐸𝑎3 210.4 𝑘𝐽/𝑚𝑜𝑙 59.03 210.4 ± 7.2 
𝐴(𝐾𝐻2𝑂) 

∆𝐻𝐻2𝑂 
2.09 ×  105 

88.68 
 

𝑘𝐽/𝑚𝑜𝑙 
71.29 2.09 ± 0.06 (× 105) 

Xu and Froment (1989) 

𝐴(𝐾𝐶𝐻4
) 

∆𝐻𝐶𝐻4
 

𝐴(𝐾𝐶𝑂) 
∆𝐻𝐶𝑂 
𝐴(𝐾𝐻2

) 

∆𝐻𝐻2
 

2.68 ×  10−4 
−38.28 

8.23 ×  10−5 
−70.65 

6.12 ×  10−9 
−82.90 

𝑏𝑎𝑟−1 
𝑘𝐽/𝑚𝑜𝑙 
𝑏𝑎𝑟−1 
𝑘𝐽/𝑚𝑜𝑙 
𝑏𝑎𝑟−1 
𝑘𝐽/𝑚𝑜𝑙 

1.2 2.68 ± 2.03 (× 10−4) 
Xu and Froment (1989) 
“ 
“ 
“ 
“ 

 

(Minette et al., 2018)

Kinetic Modeling

Reaction mechanism & r.d.s. incorporated
in the Hougen-Watson Langmuir-
Hinshelwood type rate equations that can
be easily used in CFD simulations
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SV = 1,198. Nm³/h/m³ SV = 1,956. Nm³/h/m³

ZF Reactive Model Validation
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ZF’s Commercial Demonstration 

Installation Operation Extraction

• 2 tubes in a 204 tubes Oxo-SMR in Texas
• Up to 80o C  lower TMT compared to adjacent tubes
• Up to 24%  lower pressure drop
• No hot spots 
• ZF  structure intact in original form after >15,000 hrs   

operation and  with 5 thermal cycles 19
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ZFRT  Pilot Plant Installation 

• At Université Catholique
de Louvain (UCL), Belgium

• Fully equipped and 
instrumented for rigorous 
testing under commercial 
conditions

• In collaboration with 
Prof. Froment and Prof. de 
Wilde

• Operational  4Q 2019

20
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Glimpses of Pilot Plant Execution
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Glimpses of Pilot Plant Execution (cont’d)
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ZF Applications in SMRs: 

Core-Merit and Benefits

▪ ZF’s lower dP, higher HTC and higher catalyst 

effectiveness allow  the following underlying 

advantages, especially for retrofits :

• higher throughput without increasing pressure drop

• higher SMR outlet temp without increasing maximum 

tube skin temperature (TSM)

• higher heat flux (average and peak) and/or higher 

reforming severity  with minimal increase in bridge-wall 

temperature and thus related firing and flue gas

• lower approach to equilibrium

• Exploitation of ZF’s annular structure supports  

“recuperating reforming” 
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ZF Advanced Solutions for SMRs

▪ ZF-Single pass (ZF-SP)
• De-stressing and/or debottlenecking of existing SMRs 

(upto 15%) with no or minimum modifications

• Higher average heat flux, cost-effective and more 

reliable new SMRs

▪ ZF-Bayonet (ZF-B)

• ZF design inherently suitable for recuperative reforming 

in new SMRs, overcoming the challenges with Pellets
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ZF-SP for SMR Debottlenecking 

De-stressing Upgrading

Max. current capacity,               % 95 100 

Post ZF retrofit  capacity,          % 100 115

S/C Ratio 3.1 2.8

Outlet temp,                                  C 860 872

Approach to equilibrium                C -10 -7

CH4 slip,                           vol % dry 5.5 5.5

Catalyst pressure drop bar
(design 2.8 bar ),  

< 2.8 2.8

Relative Radiant duty                   % 100 114

Avg heat flux                        kW/m2 75 86

Bridgwall temp,                           C 1008 1020

Max. Tube Skin Temp                 C
(design 940 C)

< 940 940
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ZF-Bayonet Configurations
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ZF-Bayonet Modeling Results
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Drivers and Benefits of ZF-Bayonet

▪ Direct exploitation of ZF’s inherent annular design  

▪ Overcomes innate limitations of the “pellet” catalyst against 

crushing from differential expansion / thermal cycling

▪ SMR size reduction up to 20% based on high grade heat 

recovery for reforming  

▪ Allows “Zero export steam” hydrogen plants for : 

• remote, stand-alone or “distributed ” hydrogen plants not 

having a steam host

• cases where export steam has low or no credit compared 

to fuel

▪ Allows lowering of carbon-footprint from reduced firing per 

unit H2

▪ Compact / modularized SMR units

▪ Applicable in various SMR configurations and designs 
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Conclusions

▪ Steam Reforming has been the predominant technology for 

Hydrogen - Syngas generation

▪ SMR catalyst governs to a large extent its capacity rating, 

performance, operational reliability and tube life

▪ Current pellet catalysts have inherent deficiencies, thus 

limiting the extent of improvements.

▪ ZoneFlow Reactor Technologies (ZFRT) has developed  

breakthrough and innovative structured catalyst reactors for 

steam reforming

▪ ZoneFlowTM (ZF) suite of catalysts offer exceptional and 

advanced solutions for revamping as well as new SMRs, 

providing attractive Capex and Opex benefits.

▪ After successful demo and test rig results, the upcoming 

world class pilot plant will allow extensive testing under 

commercial conditions and beyond for establishing its merits.
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ZoneFlow Reactor Technologies, LLC

For additional information, contact:

Sanjiv Ratan
Director of Marketing and Prod Dev
sratan@zoneflowtech.com
+1-951-538-5501

Thank You !

mailto:sratan@zoneflowtech.com
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