

ZoneFlow™ Structured Catalyst System – Innovation for the future in Steam Reforming

Sanjiv Ratan, ZFRT, USA & Prof. Juray de Wilde, UCL, Belgium

International Hydrogen & Fuel Cell Conference Mumbai, India 8-10 December 2019

Presentation Outline

- From current BAT 'pellet' steam reforming catalyst -Status quo to ZoneFlow[™] (ZF) structured catalytic reactor technology - an innovative breakthrough
- ZF product development update and validation programs
- Application merits and advanced solutions of ZF reactor technology

ZoneFlowTM innovative breakthrough for Steam Reforming

Conventional pellet SMR catalyst

ZoneFlow[™] structured catalytic reactor system

Structured near-wall casing:

- Intensified heat transfer
- Reduced pressure drop
- High interfacial surface area
- Improved catalyst effectiveness
- Robust mechanical strength

ZoneFlow[™] Advantages against Pellets (BAT)

Property	BAT - Status quo	ZoneFlow – differntited merits	
Substrate	Ceramic	Metallic foil	
Geometry	Pellets in various shapes	Structured annular casing	
Loaded pattern	Random, non-uniformity	Aligned stack, fully uniform	
Strength and Voidage	Limited (mutually)	Robust, flexible. high voidage	
Flow / temp mal-distr	Inherent (catalyst packing)	None or minimized - entire life	
Thermal cycling effects	Attrition & settling ; dP >>	No attrition & settling, stable dP	
Utilization of catalyst volume	Partial (thermal gradient); sporadic wall contact	Full, peripheral proximity - in cold AND hot condition	
GSA access / activity	Intra diffusion limitations	Full open-access to coated fins	
Catalyst effectiveness	Low , inherent	Higher (by multi-fold)	
Pressure drop	Base, increasing over life	Lower; same over entire life	
Heat transfer	Base, stagnant inner film	Higher; near-wall turbulence	

ZF Validation Program

- New generation (cost) optimized design validated
- Specific applications enhancement "enabling" technology
 - Single-pass (ZF-SP)
 - Bayonet (ZF-B)
- Verification / validation of performance at near-commercial conditions
 - ✓ CFD modelling (1D & 3D)
 - ✓ Feedback from commercial demo (15 months run)
 - ✓ Heat transfer and pressure drop (HTPD) Test Rig at UCL
 - ✓ Kinetics Lab at UCL for (intrinsic) evaluations of catalysts
 - ✓ Pilot plant coming up for commercial hot reactive testing
 - ✓ Demo with strategic partners and customers
- Readiness for Commercial Roll-out

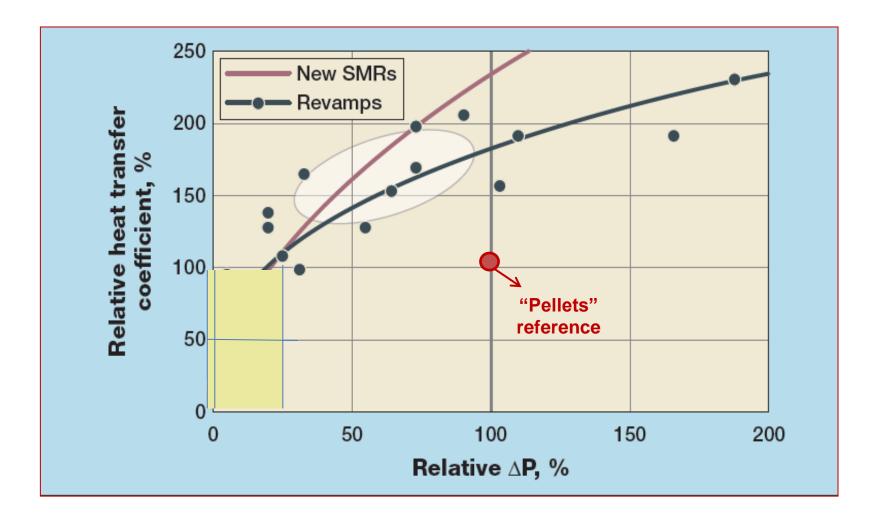
- Detailed 3D geometry (periodic domain)
- Detailed reaction kinetics (coupled)
- Reynolds-Averaged Navier-Stokes approach

Boundary_conditions:

(De Wilde & Froment, 2012)

Solid internals coated with catalyst:

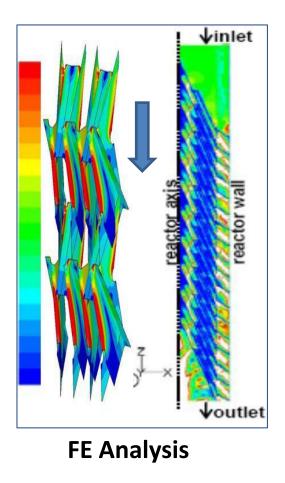
$$\widetilde{k}_{g,A} \left(m_{As}^{s} - m_{A} \right) = \rho_{s} dM_{A} \sum_{k} \alpha_{A,k} \eta_{k} r_{k} (\overline{m}_{s}^{s}, T_{s})$$


$$= (1 - \varepsilon) \rho_{s} M_{A} \sum_{k} \alpha_{A,k} \eta_{k} r_{k} (\overline{m}_{s}^{s}, T_{s}) / a_{V}$$

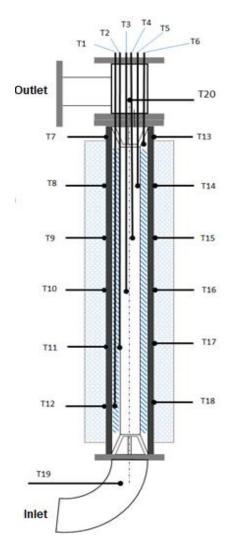
$$h_{f} (T_{s} - T) = \rho_{s} d\sum_{k} \eta_{k} r_{k} (\overline{m}_{s}^{s}, T_{s}) (-\Delta H_{k})$$

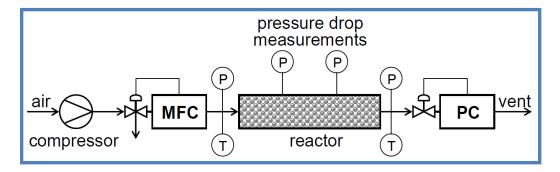
$$= (1 - \varepsilon) \rho_{s} \sum_{k} \eta_{k} r_{k} (\overline{m}_{s}^{s}, T_{s}) (-\Delta H_{k}) / a_{V}$$

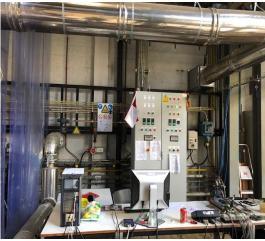

CFD Modeling Results

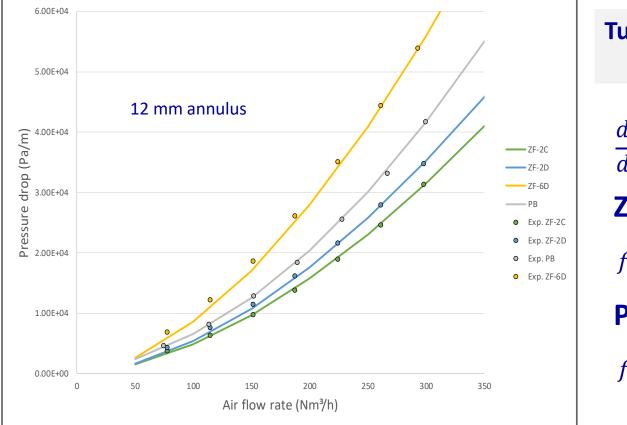


Rigorous CFD and FEA Results






HTPD Test Rig


Air flow 75-300 Nm³/h, temperature 100-500°C

Pressure Drop Testing : ZF v/s Pellets

Turbulence model (CFD) / friction factor (1D)

$$\frac{dP}{dZ} = -f \frac{\rho_g u_s^2}{L}$$

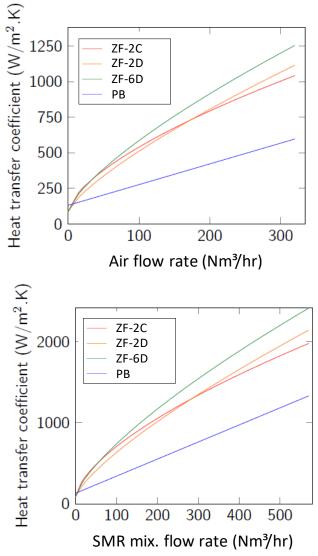
ZoneFlow:

$$f = \frac{16}{Re} + a_1 Re^{-a_2}$$

Packed bed:

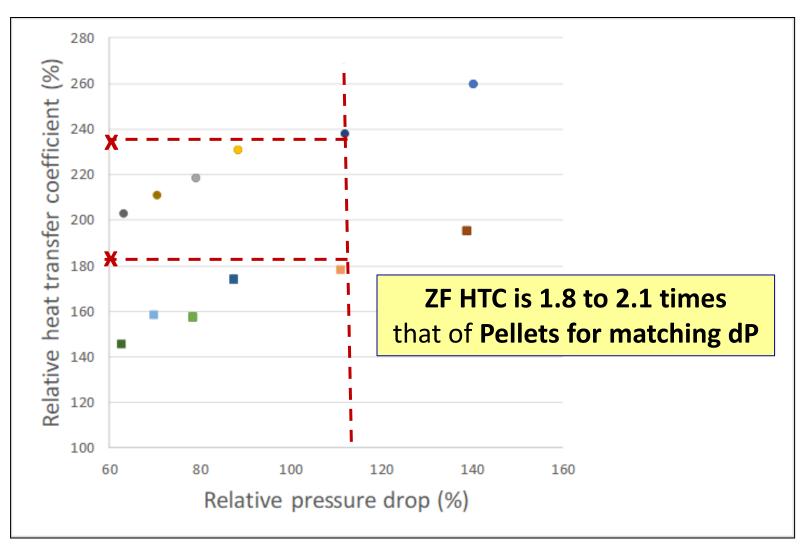
$$f = \frac{1-\varepsilon}{\varepsilon^3} \left[a_3 + \frac{a_4(1-\varepsilon)}{Re_p} \right]$$

95% confidence intervals model parameters determined


Heat Transfer Testing : ZF v/s Pellets

ZoneFlow:

$$Nu = \frac{86L}{\lambda_g} + a_5 Re^{a_6} Pr^{1/3}$$


Packed bed: $Nu_p = \frac{a_7 d_p}{\lambda_g} + a_8 Re_p Pr$

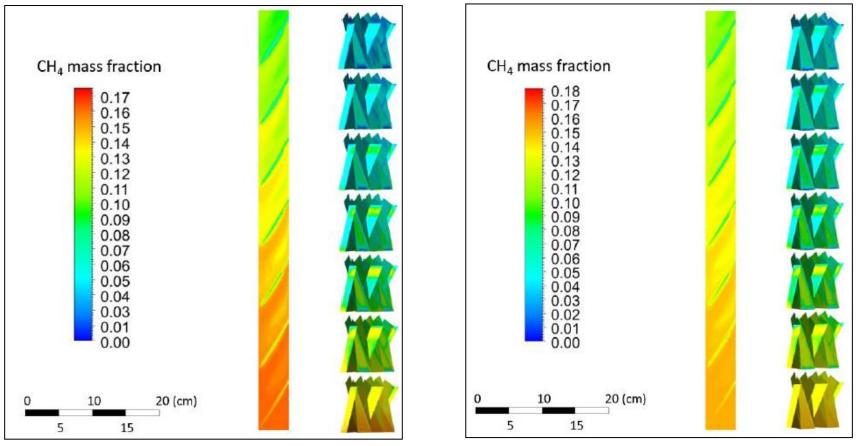
- 95% confidence intervals model parameters determined
- Fast generation turbulence in the near-wall region confirmed

ZF v/s Pellets : dP - HTC Results

Catalyst Kinetics Evaluation Lab

Kinetic Modeling

Г				'arameter	Value	Unit	t-value	95% Confidence intervals
	$\binom{k_1}{25}$	$\frac{p_{CD}^{2.5}}{DEN^2} \left(p_{CH_4} p_{H_2O} - \frac{p_{CO} p_{H_2}^3}{K_I} \right)$	$A(k_1)$	7.48×10^{12}	$mol.bar^{1/2}/(kg_{cat}.s)$	27.98	$7.48 \pm 0.54 (\times 10^{12})$	
	(1	$p_{H_2}^{\mu_2} \int \left(\frac{p_{CH_4} p_{H_2O}}{K_I} \right)$	$A(k_2)$	5.43×10^5	$mol/(kg_{cat}.s.bar)$		Xu and Froment (1989)	
	$r_1 =$		DEN ²	$A(k_3)$	9.56×10^{11}	$mol.bar^{1/2}/(kg_{cat}.s)$	28.43	$9.56 \pm 0.68 (\times 10^{11})$
			DEN-	E_{a1}	226.4	kJ/mol	60.16	226.4 ± 7.5
,	/		E_{a2}	67.13	kJ/mol		Xu and Froment (1989)	
		$\binom{k_2}{1}$	$(p_{CO}p_{H_2O} - \frac{p_{H_2}p_{CO_2}}{r})$	E_{a3}	210.4	kJ/mol	59.03	210.4 ± 7.2
	$r_2 =$: \ / /	$(p_{H_2})\left(p_{CO}p_{H_2O} - \frac{p_{H_2}p_{CO_2}}{K_{II}}\right)$ DEN^2	$A(K_{H_2O})$	2.09×10^5	17/ 1	71.29	$2.09 \pm 0.06 (\times 10^5)$
	2		DEN^2	ΔH_{H_2O}	88.68	kJ/mol		Xu and Froment (1989)
				$A(K_{CH_4})$	2.68×10^{-4}	bar ⁻¹	1.2	$2.68 \pm 2.03 (\times 10^{-4})$
		(m)	$\frac{p_{P_{H_2}^{3.5}}(p_{CH_4}p_{H_2O}^2 - \frac{p_{CO_2}p_{H_2}^4}{K_{III}})}{DEN^2}$	ΔH_{CH_4}	-38.28	kJ/mol		Xu and Froment (1989)
			$p_{H_2}^{3.5} p_{CH_4} p_{H_2O}^2 - \frac{1}{K_{III}}$	$A(K_{CO})$	8.23×10^{-5}	bar ⁻¹		
	$r_3 =$:	-/()	ΔH_{CO}	-70.65 6.12×10^{-9}	kJ/mol bar^{-1}		
	2		DEN^2	$A(K_{H_2})$	-82.90	kJ/mol	(NAin	o^{\pm}
•			V_{H_2O}	ΔH_{H_2}	-02.90			ette et al., 2018)
DEN = 1 + 1	K_{CH_4}	$p_{CH_4} +$	$K_{CO}p_{CO} + K_{H_2}p_{H_2} + K_{H_2O}\frac{r_{H_2O}}{p_{H_2}}$					
			CH_4 molar conversion			00		
			CH4 motar conversion	1		CO_2 mo	lar conversi	on
				Poaction	n mochanisr			
	0.2 – Reaction mechanism & RDS						· · · · · · · · · · · · · · · · · · ·	
compatibility for CFD simulations								
	-			,				
	H	0.15	-		02			· •
	Predicted x_{CO} - 1.0 C_{H_4}			Predicted x_{CO} ,				
	ed		1		eq	0.1	11.	
	lict	0.1	- •/		- ict	0.1	•	
	red				l pa	• /.		
	Ц							
		0.05	- ***		0	.05 - 🤧 🚺		-
						1		
						21 A		
		0		1		0	1	
		Ŭ.	0 0.05 0.1 0.15	0.2		0 0.05	0.1	0.15 0.2
			Observed x_{CH_4}			Obse	erved x_{CO_2}	
						3 666	~002	


Confidential information of ZoneFlow Reactor Technologies LLC

ZF Reactive Model Validation

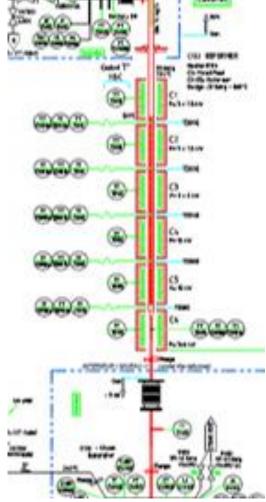
SV = 1,956. Nm³/h/m³

SV = 1,198. Nm³/h/m³

ZF's Commercial Demonstration

Installation

Operation


Extraction

- 2 tubes in a 204 tubes Oxo-SMR in Texas
- Up to 80° C lower TMT compared to adjacent tubes
- Up to 24% lower pressure drop
- No hot spots
- ZF structure intact in original form after >15,000 hrs operation and with 5 thermal cycles

ZFRT Pilot Plant Project

- World class unit with extensive design and instrumentation with stringent safety audit and Hazop/LOPA (a small extract of SMR P&ID is depicted)
- At Université Catholique de Louvain (UCL), Belgium, in collaboration with Prof. Froment and Prof. de Wilde
- Rigorous test plan and comprehensive procedures for testing under and beyond commercial conditions
- Site construction nearing completion in coming months

Glimpses of Pilot Plant Installation

ZF Applications in SMRs: Core-Merit and Benefits

- ZF's lower dP, higher HTC and higher catalyst effectiveness allow the following underlying advantages, especially for retrofits :
 - higher throughput without increasing pressure drop
 - higher SMR outlet temp without increasing maximum tube skin temperature (TSM)
 - higher heat flux (average and peak) and/or higher reforming severity with minimized increase in bridge-wall temperature and thus related firing and flue gas
 - lower approach to equilibrium
- Exploitation of ZF's annular structure supports "recuperating reforming"

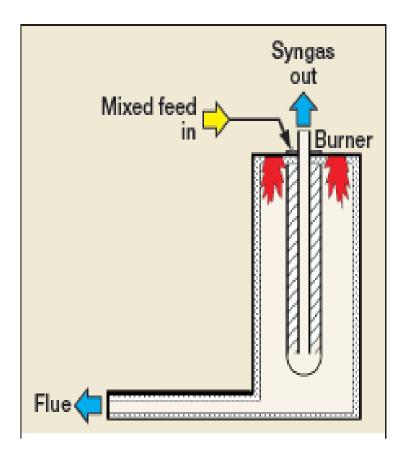
ZF Advanced Solutions for SMRs

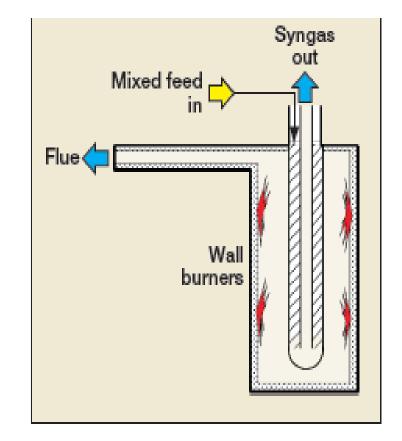
ZF-Single pass (ZF-SP)

- De-stressing and/or debottlenecking of existing SMRs (upto 15%) with no or minimum modifications
- Higher average heat flux, cost-effective and more reliable new SMRs

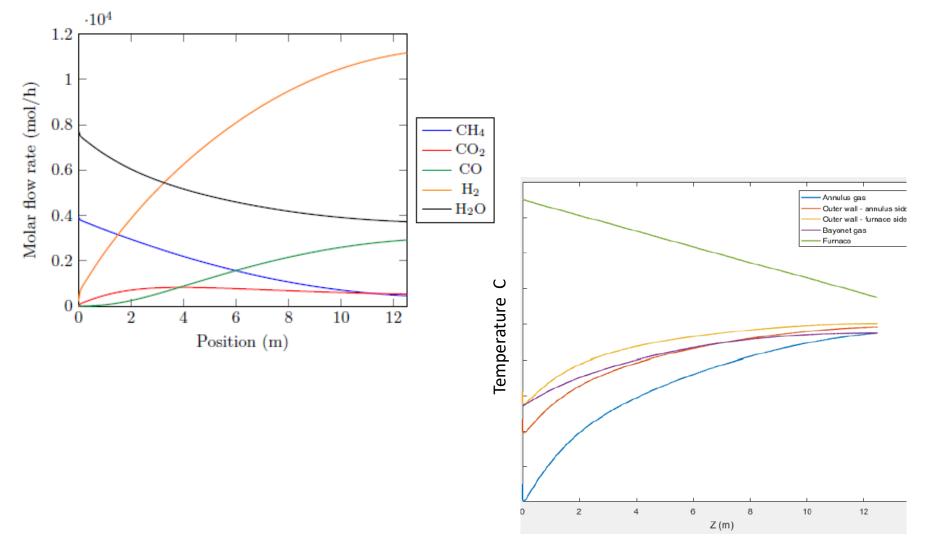
ZF-Bayonet (ZF-B)

 ZF design inherently suitable for recuperative reforming in new SMRs, overcoming the challenges with Pellets




ZF-SP for SMR Debottlenecking

		De-stressing	Upgrading
Max. current capacity,	%	95	100
Post ZF retrofit capacity,	%	100 📕	115 🕈
S/C Ratio		3.1	2.8
Outlet temp,	С	860	872
Approach to equilibrium	С	-10	-7
CH4 slip,	vol % dry	5.5	5.5
Catalyst pressure drop (design 2.8 bar),	bar	< 2.8	2.8
Relative Radiant duty	%	100	114
Avg heat flux	kW/m2	75	86
Bridgwall temp,	С	1008	1020
Max. Tube Skin Temp (design 940 C)	С	< 940	940


ZF-Bayonet Configurations

ZF-Bayonet Modeling Results

Drivers and Benefits of ZF-Bayonet

- Direct exploitation of ZF's inherent annular design
- Overcomes innate limitations of the "pellet" catalyst against crushing from differential expansion / thermal cycling
- SMR size reduction up to 20% based on high grade heat recovery for reforming
- Allows "Zero export steam" hydrogen plants for :
 - remote, stand-alone or "distributed " hydrogen plants not having a steam host
 - cases where export steam has low or no credit compared to fuel
- Allows lowering of carbon-footprint from reduced firing per unit H2
- Compact / modularized SMR units
- Applicable in various SMR configurations and designs

Thank You !

For additional information, contact:

Sanjiv Ratan Director of Marketing and Prod Dev sratan@zoneflowtech.com

+1-951-538-5501

