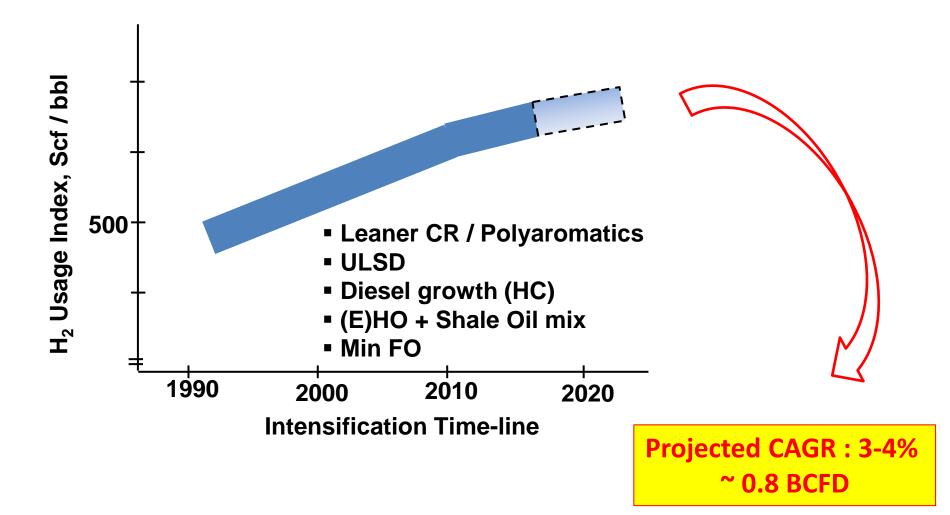


Innovative ZoneFlow[™] Technology Offers Breakthrough Solutions in Refinery Hydrogen Generation

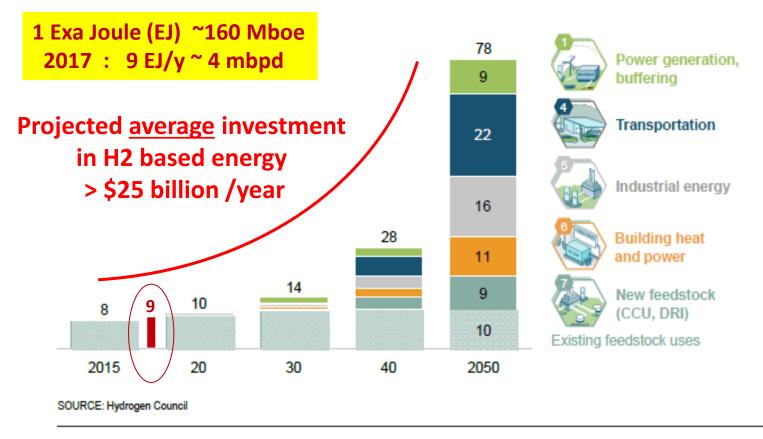
SANJIV RATAN ZoneFlow Reactor Technologies, LLC (ZFRT), USA

Prof. Juray de Wilde, Universite Catholique De Louvain (UCL), Belgium

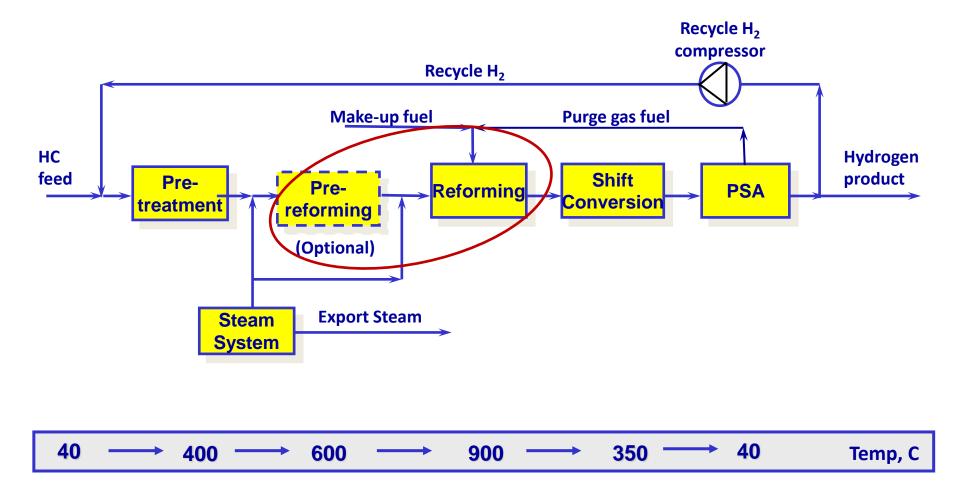

AFPM 2018 Annual Meeting New Orleans, USA; Mar 11-13

Presentation Outline

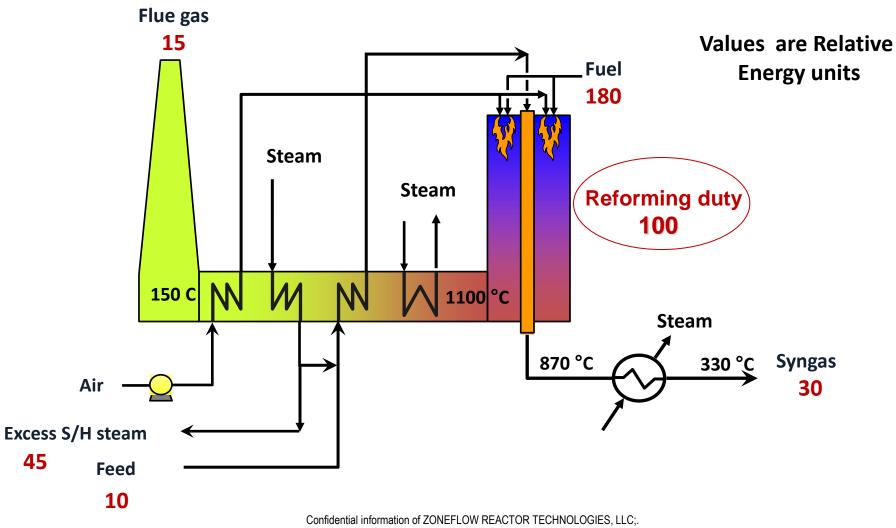
- Introduction
- Steam Reforming Pellet catalyst status quo
- ZoneFlow[™] (ZF) Reactor Technology an innovative breakthrough
- ZF development status and validation programs
- Application of ZF Reactor Technology in hydrogen plants
 - ZF Single-Pass Reactors (ZF-SP)
 - Convective Pre-Reforming Reactors (ZF-CPR)
 - ZF Bayonet for Recuperative reforming (for New SMRs)


Introduction : Refinery Hydrogen Intensification

Hydrogen-for-Energy: Demand Projections (EJ)


Hydrogen demand could increase 10-fold by 2050

Global energy demand supplied with hydrogen, EJ


Confidential information of ZONEFLOW REACTOR TECHNOLOGIES, LLC;.

Typical Hydrogen Plant Block Diagram

Steam Reformer: Heart of Hydrogen Plant

Typical Overview

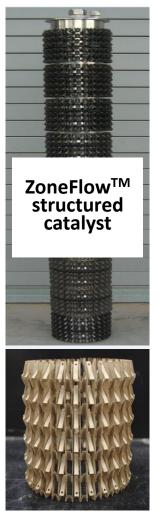
Steam Reforming Catalyst - Status Quo

- State-of-the-art steam reforming catalysts have by and large stayed "pellet-based" and so have the inherent deficiencies (of random packing) in terms of :
 - high pressure drop
 - limited heat transfer (sporadic catalyst-to-wall contact)
 - very low catalyst effectiveness (intrinsically diffusion limited)
 - catalyst attrition / breakage from thermal cycling
 - flow / temperature non-uniformity
- Various attempts for structured catalyst over the years, haven't been successful due to few core challenges

ZoneFlow Reactor Technology – an Innovative Breakthrough

- Advanced high-performance structured catalyst with step improvements on key performance parameters, compared to current pellet catalysts :
 - up to 2 times higher heat transfer (including internal radiative transfer)
 - up to 50% lower pressure drop
 - <u>annular flexible</u> casing design ensures wall proximity in <u>cold and hot</u> conditions and also creates "near-wall" flow
 - up to 10 times higher catalyst effectiveness
 - high strength metal substrate; no attrition from thermal cycling
 - uniformity of flow over (longer) operating life
 - uniquely befitting for Recuperative reforming also

Conventional SMR Catalyst vs. ZoneFlow[™] (ZF)



Conventional Pellet catalyst

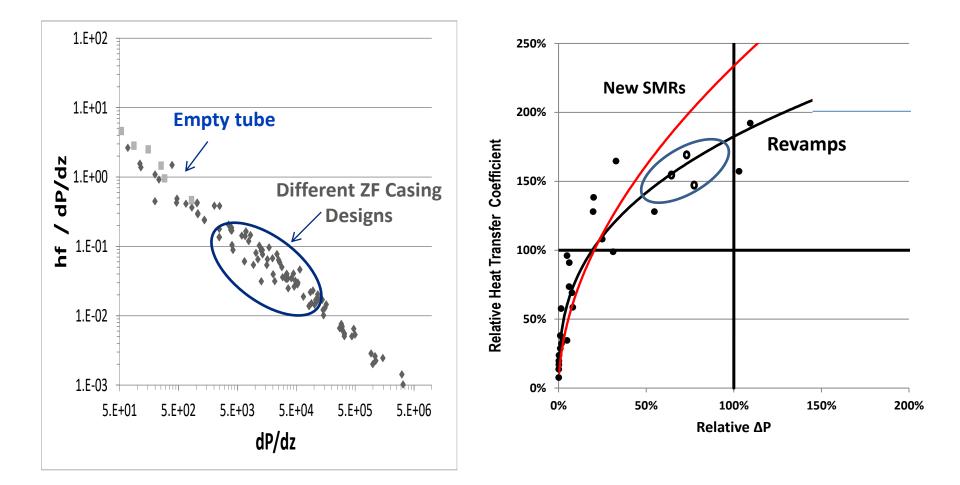
- From random packing to uniform, engineered foil structure
- From irregular and scanty pellet-tubewall contact to uniform structure-to-wall contact in all conditions
 - From strength-limited voidage and related flow resistance to robust high-voidage structure with near-wall turbulence

Conventional SMR Catalyst vs. ZoneFlow[™] (ZF)

Conventional Pellet catalyst

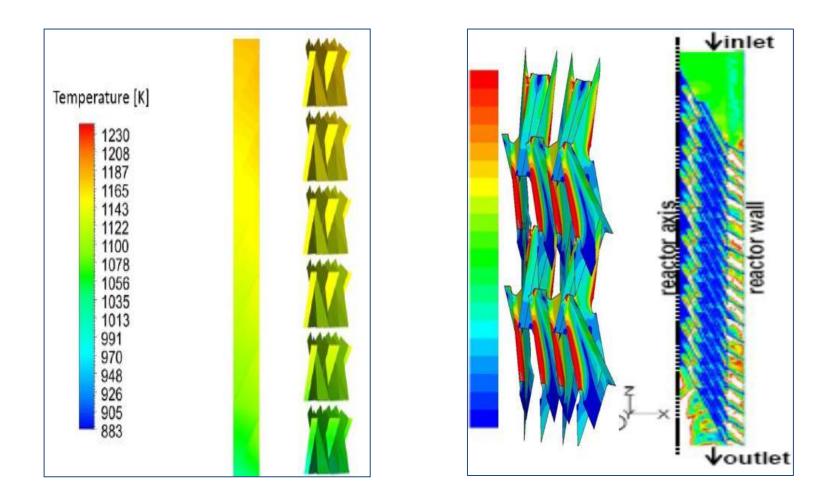

From diffusion-limited active sites' access to high-GSA thin-fin structure with full surface access

High activity micro-layer catalyst with nonacidic and steam-stable substrate


Multifold increase in catalyst effectiveness; higher resistance to coking and upsets; longer operating life

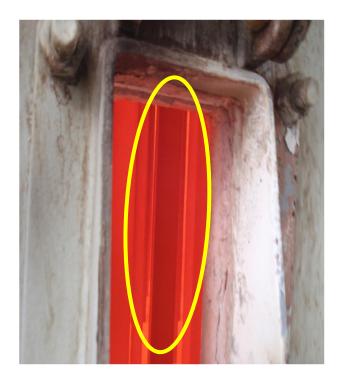
 From limited crush strength to durable & flexible metal structure

> No attrition or any breakage ; stable pressure drop and flow uniformity over full life



ZF's Development : Detailed CFD Modeling

Confidential information of ZONEFLOW REACTOR TECHNOLOGIES, LLC;.

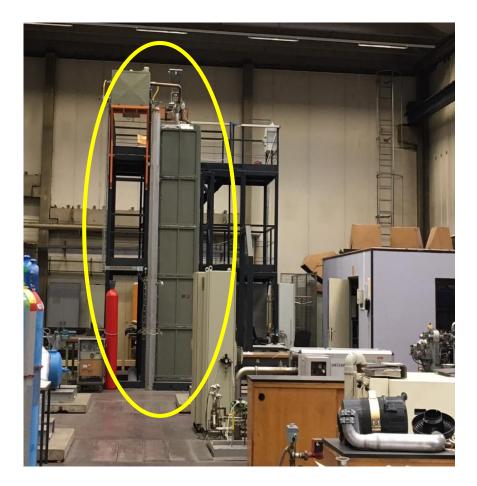

ZF's CFD Modeling and FE Analysis Results

ZF's Commercial Demonstration

Installation

Extraction

Operation


Demonstrated Results Compared to Pellet Tubes

- Up to 80° C lower TMT compared to adjacent tubes
- Up to 24% lower pressure drop
- No hot spots
- ZF structure intact in original form after >15,000 hrs operation and with 5 thermal cycles
- Lower S/C ratio operation was not available

ZFRT Pilot Plant

- At Université Catholique de Louvain (UCL), Belgium
- Fully equipped and instrumented pilot plant for extensive testing of ZF reactors under rigorous commercial conditions and beyond
- In collaboration with Prof. Gilbert Froment and Prof. Juray de Wilde
- Added micro-reactor lab for studying intrinsic reaction kinetics
- Operational 2Q 2018

ZFRT Pilot Plant Installation

Confidential information of ZONEFLOW REACTOR TECHNOLOGIES, LLC;. Any unauthorized use, transmission, dissemination, distribution or copying of the content of this presentation is strictly prohibited.

ZF applications in (H₂)SMRs: Core-Merit Benefits

- ZF's lower dP, higher HTC and higher catalyst effectiveness allow the following underlying advantages, especially for retrofits :
 - higher throughput without increasing pressure drop
 - higher SMR outlet temp <u>without</u> increasing maximum tube skin temperature (TSM)
 - higher heat flux and/or higher reforming severity <u>without</u> increasing bridge-wall temperature and thus related firing / flue gas
 - lower approach to equilibrium
- Exploitation of ZF's annular structure supports "recuperating reforming"

ZF Solutions for Hydrogen SMRs

- ZF-Single pass (ZF-SP)
 - De-stressing and Retrofitting existing SMRs
 - Higher-flux, cost-effective and more reliable new SMRs
- ZF-Convective pre-reforming (ZF-CPR)
 - Unmatched in-situ retrofit for additional capacity in existing SMRs without major modifications
 - Efficient and cost-effective applications in new SMRs
- ZF-Bayonet (ZF-B)
 - Uniquely applicable for recuperative reforming in new SMRs, overcoming current challenges

ZF-SP for De-Stressing SMRs

- Stressed SMR Indicators / Attributes
 - Pressure drop (or its build up) limiting throughput
 - Loss of catalyst activity → hotter tubes limiting outlet temperature
 - Catalyst attrition / settling from thermal cycling
 - Carbon formation / hot spots
 - Impact on (remaining) tube life
- Constrained reforming capacity
- Replacing (pellet) catalyst in these SMRs with ZF-SP Reactors can overcome these deficiencies

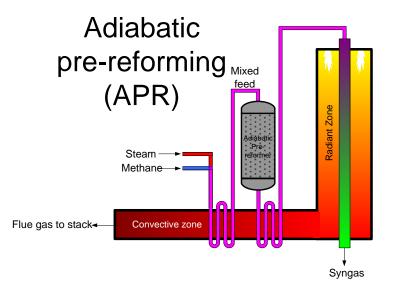
ZF-SP for De-Stressing of SMR

SMR De-Stressing		SMR Design	Stressed Operation	ZF-SP replacing pellets
Relative Capacity,	%	100	95	100
Capacity limitations		-	dP, TSM	removed
S/C Ratio		3.0	3.3	2.8
Outlet temp,	С	860	843	868
Approach to Equilibrium	EOR C	-10	-12	-7
CH4 slip, c	lry vol %	5	5	5
Radiant Pressure drop,	bar	2.8	2.8	2.3
Relative Radiant duty	%	100	97	99
Avg heat flux	kW/m2	78	74	78
Bridgwall temp,	С	1000	980	998
TSM (avg)	С	935	935	926

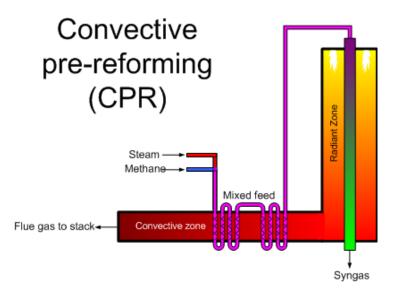
Confidential information of ZONEFLOW REACTOR TECHNOLOGIES, LLC;.

ZF-SP for De-bottlenecking or New SMR

- Achieve >5% more equivalent capacity
- Higher average heat flux (without exceeding tube design temperature)
- Improved temperature uniformity
- Extended tube life and improved reliability
- Extended EOR
- Optimized operation and enhanced reliability


ZF-SP for Debottlenecking

		Reference	ZF-Radiant
Relative Capacity,	%	100	105
Capacity limitations		dP, TSM	removed
S/C Ratio		3.0	2.8
Outlet temp,	С	865	870
Approach to Equilibrium	С	-10	-7
CH4 slip,	vol %	5.5	5.7
Radiant Pressure drop,	bar	2.8	2.5
Relative Radiant duty	%	100	104
Avg heat flux	kW/m2	75	78
Bridgwall temp,	С	1008	1004
TSM	С	940	938

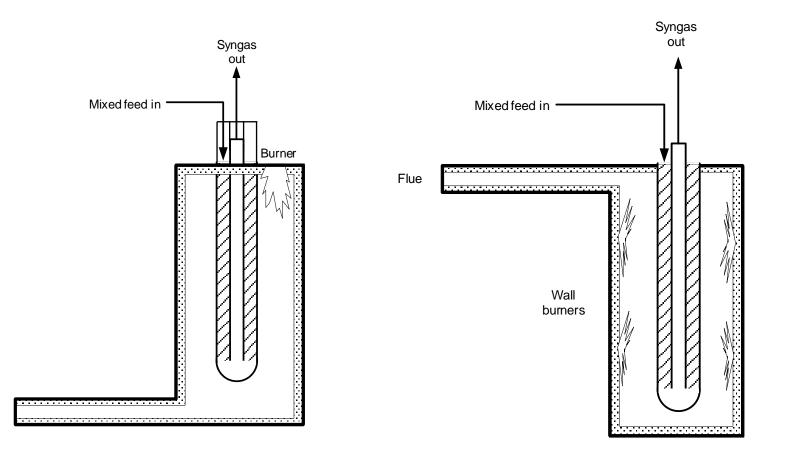

Confidential information of ZONEFLOW REACTOR TECHNOLOGIES, LLC;.

Pre-reforming

In-situ efficient use of higher grade convective heat using existing process coils

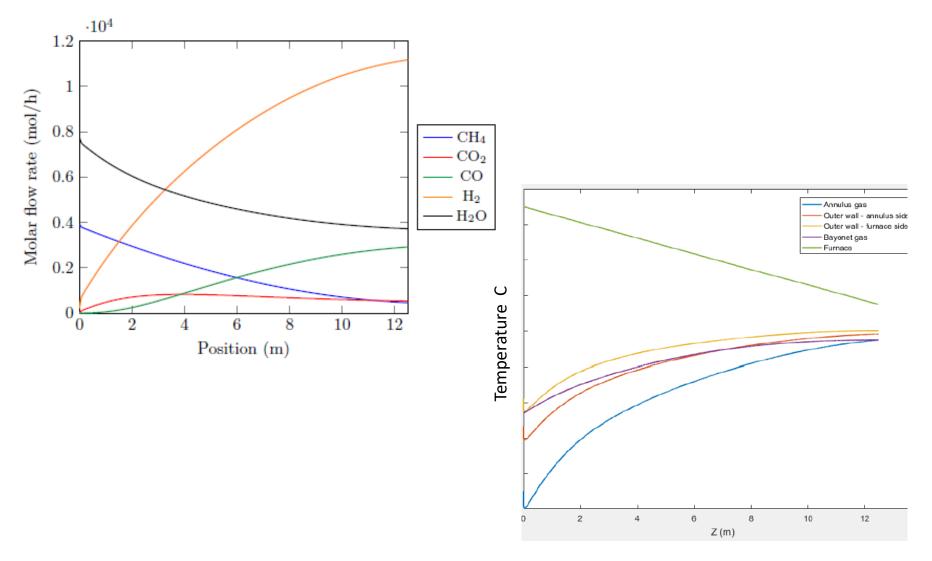
ZoneFlow[™]

ZF Convective Pre-reforming (ZF-CPR)


- Non-adiabatic convective pre-reforming using ZF-CPR inserts
- Tailored structured packing for very low dP, high GSA and (low temp reforming) activity
- In-situ horizontal loading in the mixed feed superheat coils
- Avoids major modifications and also the related downtime
- Optimization of pressure drop in combination with ZF-SP in SMR radiant tubes
- For revamps, 8-12% additional reforming without increasing SMR firing duty
- For New SMRs, 10-15% smaller SMR and proportionately also the steam system.

ZF-CPR for SMR Capacity Upgrade

		Existing	ZF + CPR
Relative Capacity,	%	100	115
S/C Ratio		3.0	2.8
SMR inlet temp,	С	550	550 / 575 *
SMR outlet temp,	С	870	870 / 878 *
Approach to Equilibrium	EOR C	-10	-7
CH4 slip,	dry vol %	4.8	5.4 / 5.0
Radiant Pressure drop,	bar	2.5	2.3
Avg heat flux	kW/m2	80	80 - 82
Relative Radiant duty	%	100	100 / 103
Bridgewall temp,	С	1020	1009 / 1018
TSM	С	950	938 / 948


* Exploiting of existing plant design margins

ZF-Bayonet Configurations

Flue

ZF-Bayonet Modeling and Simulation Results

Confidential information of ZONEFLOW REACTOR TECHNOLOGIES, LLC;.

Drivers and Benefits of ZF-Bayonet

- Direct exploitation of ZF's inherent annular design
- Overcomes innate limitations of the "pellet" catalyst against crushing from differential expansion / thermal cycling
- SMR size reduction up to 20% based on high grade heat recovery for reforming
- Allows "Zero export steam" hydrogen plants for :
 - remote, stand-alone or "distributed " hydrogen plants not having a steam host
 - cases where export steam has low or no credit compared to fuel
- Allows lowering of carbon-footprint from reduced firing per unit H2
- Compact / modularized SMR units
- Applicable in various SMR configurations and designs

Conclusions

- Hydrogen demand growth projections are strongly encouraging
- Steam reformer is the heart of an H2 plant; its performance and tube life are governed by catalyst
- Current pellet catalysts have inherent deficiencies, thus limiting the extent of possible improvements.
- ZoneFlow Reactor Technologies (ZFRT) has developed an innovative structured catalyst
- Exceptional and advanced solutions for revamping as well as new hydrogen SMRs, offering OPEX and CAPEX benefits.
- Successful demonstrations and pilot plant for testing under commercial / client-specific conditions

Thank You !

For additional information, contact:

Sanjiv Ratan Director of Marketing and Prod Dev sratan@zoneflowtech.com +1-951-538-5501