Development and scale-up of structured catalytic reactors for steam methane reforming

Florent Minette¹, Michael Lugo², Dean Modroukas³, Andrew W. Davis⁴, Rajinder Gill⁴, Sanjiv Ratan⁵, Jon Feinstein⁵, Marco Castaldi², **Juray De Wilde¹**

juray.dewilde@uclouvain.be

¹ Materials & Process Engineering (IMAP), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
 ² Department of Chemical Engineering, City College, City University of New York
 ³ Innoveering LLC, Ronkonkoma, New York
 ⁴ Alloy Surfaces, Co. Inc. (ASC), Garnet Valley, Pennsylvania
 ⁵ ZoneFlow Reactor Technologies, LLC, Windsor, Connecticut

255th ACS National Meeting, New Orleans, LA, March 18-22, 2018 Division of Catalysis Science and Technology

Steam Methane Reforming

- H_2 & Syngas production (H_2 & CO)
- Donwstream conversion into:
 - Methanol
 - Ammonia
 - Hydrogen
 - Synthetic fuels (Fischer-Tropsch)
- Accounts for:
 - 95% of the H_2 produced in the US
 - 48% of the $\rm H_{2}$ produced globally
- Strongly endothermic reactions
 - Multi-tubular fixed bed reactor
 - Ni/Mg-Al₂O₄ spinel cat.
 - T(gas): 750-800°C, P: 29 bar
- Intra-particle diffusion limitations => Low cat. effectiveness factors
- Pressure drop limitations
- Heat transfer limitations (wall-gas)
 - => Diameter tube: 10 cm
 - \Rightarrow Heat flux \Leftrightarrow Tube skin temp.
- Coke formation: S/C-ratio & local T

ZoneFlow[™] structured catalytic reactors

Near-wall Casing:

- Intensified heat transfer
- Reduced pressure drop
- Increased specific interfacial surface area
- Improved catalyst effectiveness
- Mechanical strength (no crushing)

ASC catalyst

A metal structure with a thin, nanostructured and adherent high surface area coating

- Integral bonding of nanostructured catalytic layers
- Can be used as a catalyst or catalyst support
- Can take on various form factors
 - ✓ Foil
 - ✓ Fiber
 - Mesh
 - ✓ Tube
- Mechanical robustness
 - Reactor geometry formed after coating
 - Potential to eliminate washcoat layer
 - No delamination under severe process conditions

Catalyst coating can be done **<u>before</u>** creating the structure

Coating thickness (µm)	10
Coating mass fraction (g _{coat} /g _{tot})	0.075
Ni content (wt.%) (reduced state)	75-85
BET surface area (m ² /g _{coat})	7.4
Density (g _{coat} /cm ³ _{coat})	5.78
Pore volume ($cm_{g/g_{coat}}^{3}$)	0.0145
Porosity (cm ³ g/cm ³ coat)	0.084

 $50 \ \mu \text{m} \qquad \text{EH I} = 20.00 \text{ kV} \qquad \text{WD} = 10 \text{ mm}$ $\text{Mag} = 400 \text{ X} \qquad 06 \text{ Jan } 2010$

 $\begin{array}{ccc} 50 \ \mu m \end{array} \qquad \begin{array}{c} \mathsf{EHT} = 20.00 \ \mathsf{kV} & \mathsf{WD} = 10 \ \mathsf{mm} \\ \mathsf{Mag} = 430 \ \mathsf{X} & 9 \ \mathsf{Nov} \ 2017 \end{array}$

ASC catalyst

Measuring intrinsic reaction kinetics

Goal : intrinsic kinetics

- Not affected by transport phenomena
- Specific design considerations
- Well defined operating conditions

Packed bed reactor:

- Bed dilution: $b_{\text{max}} = \Delta x_{\text{rel}} / (\Delta x_{\text{rel}} + 0.5 \cdot x_{\text{dil}} \cdot d_p / L)$ [Berger et al., 2002]

Measuring intrinsic reaction kinetics

Pressure (bar)	1.8 - 3.57
Temperature (°C)	448 - 602
H_2O/CH_4 molar	2.87 - 5.53
H_2/CH_4 molar	1.25

Packed bed reactor:

- Negligible interphase mass & heat transfer limitations:

-	$\Delta T_{gs} = -\Delta H \cdot r_A \cdot \rho_B \cdot d_p / (6 \cdot h_{gs}) < 0.05 \cdot R \cdot (T)^2 / E$ (Mears, 1971)	0,04 < 2,1	\checkmark
-	$\Delta C_{A,gs} = r_A \cdot \rho_s / (k_g \cdot a_{v,s}) < RI_{im,r} \cdot C_A / n \text{ (Mears, 1971)}$	5,8 x 10 ⁻⁴ < 7 x 10 ⁻⁴	\checkmark
-	Experimental verification by varying W/F		
Negl	igible intra-particle diffusion limitations:		
-	$\Phi = [(n+1)/2] \cdot [(r_A \cdot \rho_s)/(D_{A,eff} \cdot (C_{A,s})^s \cdot (a_{v,s})^2)] << 1 \text{ [Weisz & Prater, 1954]}$	Φ = 0,066	\checkmark
-	Experimental verification by varying d_{p}		
Negl	igible intra-particle heat transfer resistance:		
-	$\Delta T_{\text{int,s}} = -\Delta H \cdot r_{\text{A}} \cdot \rho_{\text{s}} \cdot (d_{\text{p}})^2 / (60 \cdot \lambda_{\text{s}}) < 0.05 \cdot R \cdot (T)^2 / E \text{ [Anderson, 1963]}$	5,7 x 10 ⁻³ < 2,1	\checkmark
Suffi	ciently small pressure drop:		
-	$\Delta P < 0.2 \cdot P_{tot}/n$ with: $\Delta P = f \cdot \rho_g \cdot (u_{sup})^2 \cdot L/d_p$ [Ergun, 1952]	10 ³ < 31 x 10 ³	\checkmark

Integral method of kinetic analysis

$$\frac{W}{F_{A0}} = \int_{X_{A1}}^{X_{A2}} \frac{dx_A}{r_A}$$

Regression:
$$S(\boldsymbol{\beta}) = \sum_{i=1}^{n} [y_i - f(\mathbf{x}_i, \boldsymbol{\beta})]^2 \xrightarrow{\boldsymbol{\beta}} Min$$

Statistical testing:

Model discrimination / adequacy:

$$F_{c} = \frac{\sum_{i=1}^{n} \frac{\hat{y}_{i}^{2}}{p}}{\sum_{i=1}^{n} \frac{(y_{i} - \hat{y}_{i})^{2}}{n - p}} \stackrel{?}{>} F(p, n - p; 1 - \alpha)$$

- Confidence intervals :

$$\begin{split} b_j - t \bigg(n - p; 1 - \frac{\alpha}{2} \bigg) &s(b_j) \le \beta_j \le b_j + t \bigg(n - p; 1 - \frac{\alpha}{2} \bigg) s(b_j) \\ t_c &= \frac{\left| b_j - 0 \right|}{s(b_j)} \end{split}$$

Physicochemical testing:

- $E_a > |\Delta H|$

- *t* - value

<i>T</i> (°C)	$W/F_{CH_{A}}^{0}$ (g _{cat} .hr/mol)	S/C ratio	<i>x_{CH4}</i> (%)	<i>x_{c02}</i> (%)	Approach to
	··· 4		Ĩ	-	Equilibrium (%)
448	0.8025	3.44	0.37	0.37	5.30
449	0.6010	3.53	0.29	0.29	5.70
449	1.2067	3.54	0.40	0.40	5.88
512	1.1655	4.47	4.87	4.39	29.27
513	0.5850	3.04	1.95	1.63	15.03
513	1.1665	3.03	5.31	4.73	22.92
514	0.5850	3.04	1.21	0.98	8.09
546	1.2028	3.53	9.45	8.85	27.98
549	0.6026	3.54	6.69	6.15	28.27
549	0.8038	3.45	8.78	8.22	27.27
567	1.1678	2.89	15.04	12.50	34.75
574	1.1678	5.53	15.84	13.36	59.87
576	0.5850	2.87	8.66	6.57	30.69
601	0.6023	3.54	13.35	11.92	44.76
602	0.8039	3.45	16.78	15.20	45.68
602	1.2071	3.54	20.35	18.24	47.00

Model	Mechanism	r.d.s.	r.d.s.	Physicochemical tests	F-value	R ²
		reaction (I)	reaction (III)			
1	1	(s1)	(s1)	Equation (6) not satisfied	150.7	0.935
2	1	(s2)	(s1)	Equation (6) not satisfied	352.7	0.959
3	1	(s3)	(s1)	Equation (6) not satisfied	182.7	0.959
4	1	(s6)	(s1)	Equation (6) not satisfied	627	0.984
5	1	(s7)	(s1)	Equations (6) and (7) not satisfied	646.4	0.984
6	1	(s10)	(s1)	Equation (6) not satisfied	305.9	0.967
7	1	(s1)	(s2)	Equations (6) and (7) not satisfied	292.5	0.949
8	1	(s2)	(s2)	Equation (6) not satisfied	268.3	0.962
9	1	(s3)	(s2)	Equations (6) and (7) not satisfied	182.7	0.96
10	1	(s6)	(s2)	Equations (6) and (7) not satisfied	204.7	0.964
11	1	(s7)	(s2)	Equations (6) and (7) not satisfied	203.7	0.964
12	1	(s10)	(s2)	Equation (6) not satisfied	306.6	0.975
13	1	(s1)	(s3)	Equation (6) not satisfied	228.1	0.956
14	1	(s2)	(s3)	Equations (6) and (7) not satisfied	252.4	0.961
15	1	(s3)	(s3)	ОК	57.6	0.699
16	1	(s6)	(s3)	Equation (6) not satisfied	633.1	0.984
17	1	(s7)	(s3)	Equations (6) and (7) not satisfied	646.8	0.984
18	1	(s10)	(s3)	Equation (6) not satisfied	399.1	0.974
19	1	(s1)	(s6)	Equation (6) not satisfied	633	0.984
20	1	(s2)	(s6)	Equation (6) not satisfied	633	0.984
21	1	(s3)	(s6)	Equation (6) not satisfied	401.9	0.98
22	1	(s6)	(s6)	Equation (6) not satisfied	633.9	0.984
23	1	(s7)	(s6)	ОК	661.4	0.984
24	1	(s10)	(s6)	Equation (6) not satisfied	633.1	0.984
25	1	(s1)	(s9)	Equations (6) and (7) not satisfied	365.9	0.972
26	1	(s2)	(s9)	Equations (6) and (7) not satisfied	329.9	0.977
27	1	(s3)	(s9)	ОК	325.5	0.976
28	1	(s6)	(s9)	Equation (6) not satisfied	460.5	0.983
29	1	(s7)	(s9)	OK	447.8	0.977
30	1	(s10)	(s9)	Equation (7) not satisfied	295.1	0.974
31	2	(s2)	N.A.	Equation (6) not satisfied	106.4	0.731
32	2	(s3)	N.A.	Equations (6) and (7) not satisfied	397.2	0.962
33	2	(s7)	N.A.	ОК	465.5	0.972
34	2	(s8)	N.A.	ОК	343.3	0.947
35	Wei and	N.A.	N.A.	Equation (6) not satisfied	256.6	0.894
	Iglesia model					
	(2004)					

Parameter	Value	Unit	t-value	95% Confidence intervals
$A(k_1)$	7.48×10^{12}	$mol.bar^{1/2}/(kg_{cat}.s)$	27.98	7.48 ± 0.54 (× 10 ¹²)
$A(k_2)$	5.43×10^{5}	$mol/(kg_{cat}.s.bar)$		Xu and Froment (1989)
$A(k_3)$	9.56×10^{11}	$mol.bar^{1/2}/(kg_{cat}.s)$	28.43	$9.56 \pm 0.68 (\times 10^{11})$
E_{a1}	226.4	kJ/mol	60.16	226.4 <u>+</u> 7.5
E_{a2}	67.13	kJ/mol		Xu and Froment (1989)
E_{a3}	210.4	kJ/mol	59.03	210.4 ± 7.2
$A(K_{H_2O})$	2.09×10^5		71.29	$2.09 \pm 0.06 (\times 10^5)$
ΔH_{H_2O}	88.68	kJ/mol		Xu and Froment (1989)
$A(K_{CH_{A}})$	2.68×10^{-4}	bar^{-1}	1.2	$2.68 \pm 2.03 (\times 10^{-4})$
$\Delta H_{CH_{A}}$	-38.28	kJ/mol		Xu and Froment (1989)
$A(K_{CO})$	8.23×10^{-5}	bar^{-1}		и
ΔH_{CO}	-70.65	kJ/mol		u
$A(K_{H_2})$	6.12×10^{-9}	bar^{-1}		u
ΔH_{H_2}	-82.90	kJ/mol		u

Intra-catalyst diffusion-reaction modelling

	Model A		Model B	
Layer thickness	η_I	η_{III}	η_{I}	η_{III}
10 µm	0.959	0.909	0.995	0.998
30 µm	0.784	0.620	0.954	0.978
50 µm	0.606	0.454	0.884	0.937

- Detailed 3D geometry (periodic domain)
- Detailed reaction kinetics (coupled)
- Reynolds-Averaged Navier-Stokes approach

Species A:

$$\nabla \cdot \left(\rho \mathbf{m}_{\mathrm{A}} \mathbf{\overline{u}} \right) = \nabla \cdot \left(\mathbf{D}_{\mathrm{Am,eff}} \nabla \mathbf{m}_{\mathrm{A}} \right)$$

Total mass:

$$\nabla \cdot \left(\rho \overline{u} \right) = 0$$

Momentum:

$$\nabla \cdot \left(\rho \overline{u} \overline{u} \right) = -\nabla P_{\text{eff}} + \nabla \cdot \left(\overline{\overline{\sigma}_{\text{eff}}} \right) + \overline{b}$$

Energy:

$$\nabla \cdot \left(\rho \operatorname{Eu}\right) = -\nabla \cdot \left(\overline{u} \operatorname{P}_{eff}\right) + \nabla \cdot \left(\overline{\sigma_{eff}} \cdot \overline{u}\right) + \nabla \cdot \left(\lambda_{f,eff} \nabla T\right) + Q_{rad} - \nabla \cdot \left(\sum_{i} h_{i} J_{i}\right)$$

+ Standard k-s turbulence model (De Wilde & Froment, 2012)

- Detailed 3D geometry (periodic domain)
- Detailed reaction kinetics (coupled)
- Reynolds-Averaged Navier-Stokes approach

Boundary conditions:

(De Wilde & Froment, 2012)

Solid internals coated with catalyst:

$$\widetilde{k}_{g,A} \left(m_{As}^{s} - m_{A} \right) = \rho_{s} dM_{A} \sum_{k} \alpha_{A,k} \eta_{k} r_{k} (\overline{m}_{s}^{s}, T_{s})$$

$$= (1 - \varepsilon) \rho_{s} M_{A} \sum_{k} \alpha_{A,k} \eta_{k} r_{k} (\overline{m}_{s}^{s}, T_{s}) / a_{V}$$

$$h_{f} (T_{s} - T) = \rho_{s} d\sum_{k} \eta_{k} r_{k} (\overline{m}_{s}^{s}, T_{s}) (-\Delta H_{k})$$

$$= (1 - \varepsilon) \rho_{s} \sum_{k} \eta_{k} r_{k} (\overline{m}_{s}^{s}, T_{s}) (-\Delta H_{k}) / a_{V}$$

Heated wall:

$$Q_{hw} = h_{f,hw} \left(T_{hw,i} - T \right) + Q_{rad}$$

(Jayatilleke, 1969)

Coupled Flow-Reaction Simulation

- Detailed 3D geometry (periodic domain)
- Detailed reaction kinetics (coupled)
- Reynolds-Averaged Navier-Stokes approach

Methane steam reforming:

Reaction-1:	$CH_4 + H_2O \Leftrightarrow CO + 3H_2$			
Reaction-2:	$\rm CO + H_2O \Leftrightarrow \rm CO_2 + H_2$	(water gas shift)		
Reaction-3:	$CH_4 + 2H_2O \Leftrightarrow CO_2 + 4H_2$			
Coke formation and gasification:				
Reaction-C1:	$CH_4 \Leftrightarrow C + 2H_2$			
Reaction-C2:	$CO + H_2 \Leftrightarrow C + H_2O$	(Boudouard)		
(Xu & Froment, 1989; Snoeck & Froment, 2002)				

Cold flow pilot plant

Pressure gradient (Pa/m)

Turbulence model (parameters)

(De Wilde & Froment, 2013)

Hot & Reactive flow pilot plant

Interfacial mass & heat transfer (parameters) & Radiative heat transfer & Model validation

Reactive flow pilot plant

SV = 1,198. Nm³/h/m³

SV = 1,956. Nm³/h/m³

Reactive flow pilot plant

SV = 1,198. Nm³/h/m³

SV = 1,956. Nm³/h/m³

Reactive flow pilot plant

SV = 1,198. Nm³/h/m³

	Measured	Simulated
	Mol%, Dry	Mol%, Dry
CH_4	10.23	9.85
H_2	48.34	49.54
CO_2	8.73	8.64
CO	28.92	28.76
N_2	3.47	3.21

	Measured	Simulated
	Mol%, Dry	Mol%, Dry
CH_4	11.76	11.70
H_2	47.23	47.35
CO_2	10.37	10.14
CO	26.93	26.89
N_2	3.71	3.92

Computational Fluid Dynamics Commercial scale & optimization

New SMR pilot plant at IMAP with ZoneFlow Reactor Technologies, LLC

Conclusions

- Scale-up and optimization of reactors and processes facilitated by detailed modelling and simulation
- Multi-scale approach and scale-bridging strategies required
- Different aspects to be studied separately with specifically designed equipments
- Fundamental approach feasible with modern computational power
- Approach used to study scale-up and optimization of the promising structured reactor for Steam Methane Reforming of ZoneFlow Reactor Technologies, LLC